
NPS-CS-14-003

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

Behavior Models for Software Architecture

by

Mikhail Auguston

November 2014

Approved for public release; distribution is unlimited

Prepared for:
Consortium for Robotics and Unmanned Systems Education and Research (CRUSER)

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE
 11-06-2014

2. REPORT TYPE unclassified
Technical Report

3. DATES COVERED
09-01-2014 -11-01-2014

4. TITLE AND SUBTITLE

Behavior Models for Software Architecture

5a. CONTRACT NUMBER

5b. GRANT NUMBER
RWGY8

5c. PROGRAM ELEMENT
NUMBER

6. AUTHOR(S)

Mikhail Auguston

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
NPS Computer Science Department

8. PERFORMING
ORGANIZATION REPORT
NUMBER
NPS-CS-14-003

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Consortium for Robotics and Unmanned Systems Education and Research (CRUSER;
http://cruser.nps.edu)

10. SPONSOR/MONITOR’S
ACRONYM(S)

11. SPONSOR/MONITOR’S
REPORT NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Monterey Phoenix (MP) is an approach to formal software system architecture specification based on behavior models. Architecture
modeling focuses not only on the activities and interactions within the system, but also on the interactions between the system and its
environment, providing an abstraction for interaction specification. The behavior of the system is defined as a set of events (event
trace) with two basic relations: precedence and inclusion. The structure of possible event traces is specified using event grammars and
other constraints organized into schemas. The separation of the interaction description from the components behavior is an essential
MP feature. The schema framework is amenable to stepwise architecture refinement, reuse, composition, visualization, and multiple
view extraction. The approach yields a basis for executable architecture specification supporting early testing and verification,
systematic use case generation, and performance estimates with automated tools.

15. SUBJECT TERMS
software and system architecture models, executable architecture models, behavior models, architecture description languages

16. SECURITY CLASSIFICATION OF: 17. LIMITATION

OF ABSTRACT

UU

18. NUMBER
OF PAGES

36

19a. NAME OF
RESPONSIBLE PERSON
Mikhail Auguston

a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified 19b. TELEPHONE

NUMBER (include area code)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL

Monterey, California 93943-5000

Ronald A. Route Douglas A. Hensler
President Provost

The report entitled “Behavior Models for Software Architecture” was prepared for and
funded by Consortium for Robotics and Unmanned Systems Education and Research
(CRUSER)

Further distribution of all or part of this report is authorized.

This report was prepared by:

Mikhail Auguston

Reviewed by: Released by:

Peter Denning, Chairman Jeffrey D. Paduan
Computer Science Department Dean of Research

THIS PAGE INTENTIONALLY LEFT BLANK

ABSTRACT

Monterey Phoenix (MP) is an approach to formal software system architecture specification based on
behavior models. Architecture modeling focuses not only on the activities and interactions within the
system, but also on the interactions between the system and its environment, providing an abstraction for
interaction specification. The behavior of the system is defined as a set of events (event trace) with two
basic relations: precedence and inclusion. The structure of possible event traces is specified using event
grammars and other constraints organized into schemas. The separation of the interaction description from
the components behavior is an essential MP feature. The schema framework is amenable to stepwise
architecture refinement, reuse, composition, visualization, and multiple view extraction. The approach
yields a basis for executable architecture specification supporting early testing and verification, systematic
use case generation, and performance estimates with automated tools.

THIS PAGE INTENTIONALLY LEFT BLANK

1. INTRODUCTION
The software system development process involves several layers of models, starting with the abstractions
capturing the requirements, and proceeding to the detailed design represented by models expressed in some
programming language notation, refining the original requirements into a form that is executable on the
target computational platform.

In the last decades the concept of architecture has emerged as one such abstraction layer. Architecture plays
a role as a bridge between requirements and implementation of a system, and represents a stepwise
refinement in the design process with specific objectives and stakeholders. The following principles have
emerged as characteristic for software architecture descriptions [Perry, Wolf 1992], [Shaw, Garlan 1996],
[Bass et al. 2003].

• An architecture description belongs to a high level of abstraction, ignoring many of the

implementation details, such as algorithms and data structures.

• There should be composition operators for the hierarchical design involving components and
subsystems.

• The architecture specification should support the reuse of well-known architectural styles and patterns.
Practice has provided several architectural styles and referential architectures, as well established,
reusable architectural solutions.

• An architecture of a system should be considered in the context of the environment in which it operates,
as suggested in the international standard ISO/IEC 42010 “Systems and Software Engineering –
Architecture Description” [ISO 2011]

• The software architect needs a number of different views of the software architecture for various uses
and stakeholders [Kruchten 1995], including visual representations, like diagrams.

• Errors in early system design are the most expensive to fix when detected later in the development
lifecycle. Software architecture descriptions may be used for the early assessment of design, and for
stakeholder communication [Bosch 2000].

• The use of scenarios for evaluating software architectures is recommended as one of the best
industrial practices [Abowd et al., 1997], [Dobrica, Niemela 2002]. Scenario-Based Architecture
Analysis Method (SAAM) [Bass, Clements, Kazman 2003] is one of the most mature and commonly
used architecture analysis methods.

A conclusion in [Rozanski and Woods 2012] states: “Every system has an architecture, whether or not it is
documented and understood.”

Software architecture is concerned with the selection of architectural elements, their interactions, and the
constraints on those elements and their interactions that are necessary to satisfy the requirements and serve
as a basis for the design [Perry, Wolf 1992]. The practice of architecture description has converged on the
concepts of architectural elements, such as component, connector, and the relationships between them.

[Oreizy et al. 1998], [Taylor et al. 2010] have emphasized the role of connectors in the architecture
description as first-class entities. From this point of view a connector becomes yet another behavior
interacting with the behaviors of components.

Software design starts with finding an algorithm and mapping it on the appropriate computational platform.
An algorithm commonly is specified as a behavior applying a step-by-step procedure to solve the problem
at hand. The design process usually proceeds from the high level behavior and involves several layers of
refinement. This rationale is behinds the use of pseudo-code for software design.

 1

One of the central tenets in architecture is the principle of reuse. This requires common abstractions on
which the reuse framework can be based. For both system and software architectures one of the basic
commonalities is the concept of behavior. When designing a system the main concern is to ensure the
proper behavior in the context of environment in which the system is supposed to operate.

These considerations imply the importance of behavior models and executable architecture models, and the
need to test and verify the system architecture early in the design phase.

We suggest a framework for software architecture modeling called Monterey Phoenix (or MP). Behavior
modeling is at the core of this approach. In traditional architecture models the main elements are
components (representing the functionality), and connectors (representing the information flow between
components). In MP the main concepts are activities and coordination between activities, based on the
following principles.

• A view of the architecture as a high level description of possible system behaviors, emphasizing the
behavior of subsystems and interactions between subsystems. The MP behavior model is based on the
concept of an event as an abstraction of activity.

• Separation of the component behavior description from the interaction description provides for a high
level of abstraction and supports the reuse of architectural models. Interactions between activities are
modeled using event coordination constructs.

• The environment’s behavior is an integral part of the system architecture model. MP provides a uniform
method for modeling behaviors of the software, hardware, business processes, and other aspects of the
system. This facilitates the role of architecture as a bridge between the system requirements and design.

• The event grammar provides a view of the behavior as a set of activities (event trace) with two basic
relations, where the PRECEDES relation captures the dependency abstraction, and the IN relation
represents the hierarchical relationship. Since the event trace is a set of events, additional constraints
can be specified using set-theoretical operations and predicate logic.

• The MP architecture description is amenable to deriving multiple views, and provides a uniform basis
for specifying structural and behavioral aspects of a software system.

• MP supports automated and exhaustive (for a given scope) scenario generation for early system
architecture verification. The Small Scope Hypothesis [Jackson 2006] states that most flaws in models
could be demonstrated on relatively small counterexamples.

• MP framework can assists in unifying UML activity and sequence diagrams, statechart notations, and
the recent Executable UML Alf language [OMG 2010] for behavior specification. MP can be used as an
addition to the existing tools and methodologies.

The MP framework is intended for the use of lightweight Formal Methods in software and system
architecture design and maintenance. It provides an ecosystem for sanity checking tools, reusable
architecture patterns, reusable assertions, queries, and tools for extracting architecture views.

2. BRIEF RELATED WORK SURVEY
The following ideas of behavior modeling and formalization have provided inspiration and insights for this
work.

Literate programming introduced by D.Knuth set the directions for hierarchical refinement of structure
mapped into behavior, with the concept of pseudo-code and tools to support the refinement process [Knuth
1984].

[Campbell, Habermann 1974] and [Bruegge, Hibbard 1983] have demonstrated the application of path
expressions as appropriate abstraction for program monitoring and debugging. In [Perry, Wolf 1992] path
expressions have been used (semi-formally) as a part of software architecture description.

 2

CSP (Communicating Sequential Processes) and other process algebras [Hoare 1985], [Milner 1989],
[Roscoe 1997] provided a framework for process behavior modeling and formal reasoning about those
models, including the ideas of individual events, composite events, and event sharing. This behavior
modeling approach has been applied to software architecture descriptions for connector protocol
specification [Allen 1997], [Allen, Garlan 1997], [Pelliccione et al. 2009].

Rapide [Luckham et al. 1995a, 1995b] uses events and partially ordered sets of events (posets) to
characterize component interaction.

“The backbone of the system model should be a hierarchy of activities, … that capture the functional
capabilities of the system - suitably decomposed to a level with which the designer is happy.“ [Harel 1992].
Statecharts [Harel 1987] is an example of labeled transition system approach to the behavior modeling. It
became one of the most common behavior modeling frameworks, integrated in the broader modeling and
specification systems UML [Booch et al. 2000], and AADL [Feiler et al. 2006].

Coordination models and languages advocate separation of the interactional and the computational aspects
of software components. Configuration and architectural description languages share these principles with
coordination languages [Papadopolous, Arbab 1998], [Carriero, Gelernter 1992]. Separation of the
component behavior from the coordination between behaviors in MP follows this principle and extends on
it.

[Wang, Parnas 1994] proposed to use trace assertions to formalize the externally observable behavior of a
software module and presented a trace simulator to symbolically interpret the trace assertions and simulate
the externally observable behavior. The approach is based on algebraic specifications and term rewriting.

The Alloy modeling framework [Jackson 2006] has strongly influenced MP through ideas of integration of
sets and first order predicate logic within the relational logic framework, inheritance structure, emphasis on
lightweight Formal Methods as opposed to the full-scale theorem proving, with the fundamental concept of
Small Scope Hypothesis, and the principles of immediate feedback and visualization during model design.

The concept of software behavior models based on event grammars and event traces was also introduced in
[Auguston 1991, 1995], [Auguston, Jeffery, Underwood 2002], [Auguston, Michael, Shing 2006] as an
approach to software debugging and testing automation. The early draft of Monterey Phoenix has appeared
in [Auguston 2009 a, 2009 b]. This paper is a substantial extension of a conference paper [Auguston,
Whitcomb 2012].

3. BEHAVIOR MODELS
In a certain sense, the source code of a program is a compact description for a set of required behaviors.
The source code in any programming language – a finite object by itself – specifies a potentially infinite
number of execution paths. The behavior of the system is usually the main concern for the developer, and
the presence of unintended behaviors manifests errors in the design. A system is operating in a certain
environment, which has its own behavior and interacts with the system. The objective of the MP approach
is to provide a framework for specifying behaviors of the system, its parts and its environment, and
interactions between them.

3.1 Event concept
An implemented software system usually represents an algorithm, i.e. a step-by-step description of
activities tailored towards achieving a certain goal. The MP behavior model is based on the concept of an
event as an abstraction of activity. The event has a beginning and an end, and may have duration (a time
interval during which the action is accomplished).

The behavior of a system is modeled as a set of events with two binary relations defined for them:
precedence (PRECEDES) and inclusion (IN) – the event trace. One action is required to precede another if
there is a dependency between them, e.g. the Send event should precede the Receive event. Events may be
nested, when a complex activity contains a set of other activities. Imposing one of these basic relations on a

 3

pair of activities represents an important design decision. Usually system behavior does not require a total
ordering of events. Both PRECEDES and IN are partial ordering relations. If two events are not ordered,
they may occur concurrently. Appendix 1 provides axioms specifying the properties of basic relations.

3.2 Event grammar
The structure of possible event traces is described by an event grammar. A grammar rule specifies structure
for a particular event type (in terms of IN and PRECEDES relations) and has a form
A: pattern_list;
where A is an event type name and pattern_list is composed from event patterns. Event types that do not
appear in the left hand part of rules are considered atomic and may be refined later by adding
corresponding rules.

An instance of an event trace satisfying the grammar rule can be visualized as a directed graph with two
types of edges (one for each of the basic relations). Events are visualized as boxes, and basic relations as
arrows. Fig. 1 outlines the event patterns for use in the grammar rule’s right hand part. Here B, C, D stand
for event type names or event patterns.

Sequence denotes ordering of events under the PRECEDES relation. The rule A: B C; means that an event
a of the type A contains ordered events b and c matching B and C, correspondingly (b IN a, c IN a, and b
PRECEDES c). A grammar rule may contain a sequence of several events, like A: B C D;

Fig. 1. Event patterns and examples of event traces.

Pattern (+ B +) may be used to denote a sequence of one or more events B, and {+ B +} denotes a set of
one or more events B. In all cases it is assumed that iterated event instances are unique. Event patterns may
use recursion or iteration to describe repeated behavior patterns.

An event grammar is a graph grammar for directed acyclic graphs of vertices (events) with edges
representing relations IN and PRECEDES.

Example 1. An event grammar for car race scenarios.
car_race: {+ driving_a_car +};
driving_a_car: go_straight (* (go_straight | turn_left | turn_right) *) stop;
go_straight: (accelerate | decelerate | cruise);

Similar to context-free grammars, event grammars can be used as production grammars to derive instances
of event traces.

 4

Fig. 2. An instance of event trace derived from the event grammar in Example 1.

4. BEHAVIOR COMPOSITION AND ARCHITECTURE VIEWS
The behavior of a particular system is specified as a set of possible event traces using a schema. The
concept of the MP schema is inspired by the Z schema [Spivey 1992]. The purpose is to define the structure
of event traces (in terms of IN and PRECEDES relations) using event grammar rules and other constraints.
A schema usually contains a collection of events called roots representing the behaviors of parts of the
system (components and connectors in common architecture descriptions), composition operations
specifying interactions between these behaviors, and additional constraints on behaviors.

There is precisely one instance of each root event in a trace. A schema can contain auxiliary grammar rules
defining composite event types used in other rules, and may be reused by including it in another schema. A
schema may define both finite and infinite traces, but most analysis tools for reasoning about a system’s
behavior assume that a trace is finite.

The schema represents instances of behavior (event traces) in the same sense as Java source code represents
instances of program execution. Just as a particular execution path can be extracted from a Java program’s
source code by running it on a JVM, a particular event trace specified by a MP schema can be derived from
the event grammar rules by applying behavior composition operations and constraints.

Example 2. Simple pipe/filter architecture pattern.
SCHEMA simple_message_flow
ROOT Task_A: (* send *);
ROOT Task_B: (* receive *);

COORDINATE $x: send FROM Task_A,
 $y: receive FROM Task_B
 DO
 ADD $x PRECEDES $y
 OD;

The composition operation COORDINATE coordinates behaviors of two root events sending
and receiving messages. This trace transformation operation takes two root event traces and
produces a modified event trace (merging behaviors of Task_A and Task_B) by adding the
PRECEDES relation for the selected send and receive pairs. Essentially it is a loop performed
over the structure of coordinated events, hence the DO - OD notation for the loop body.

 5

This synchronized COORDINATE composition uses event selection patterns to specify subsets
of root traces that should be coordinated. The send pattern identifies the set of events
selected from Task_A. Synchronized composition requires that events selected in each
coordinated root trace are totally ordered (with respect to the transitive closure of PRECEDES),
both selected event sets should have the same number of elements (send events from the first
trace and receive events from the second), and the pair coordination follows this ordering
(synchronous coordination), i.e. first send is paired with first receive, second with the
second, and so on. Labels $x and $y provide access to the pair of events matching the
selection pattern within each iteration. The ADD composition completes the behavior
adjustment, specifying additional PRECEDES relation for each pair of selected events.
Behavior specified by this schema is a set of matching event traces for Task_A and Task_B
with the modifications imposed by the composition. If any of selected event sets is not totally
ordered, the synchronized coordination operation fails to produce a resulting trace.

The selection pattern may be either an event type name (atomic or composite), or an
alternative pattern composed of event type names (Example 3). Sometimes it is desirable to
coordinate groups of events. This can be done with the selection pattern (+ Pattern +) with
optional iteration scope (Example 8).

Fig. 3 (a) gives a sample of event trace satisfying the schema simple_message_flow. It
resembles a UML sequence diagram’s “swim lanes”.

Different views for different stakeholders can be extracted from MP schemas. For example,
each root may be visualized as a box. If there is a composition operation specifying an
interaction (or coordination) between root behaviors, the boxes are connected by an arrow
marked by the interaction type as illustrated in Fig. 3 (b). The root behavior by itself may be
visualized with UML Activity Diagram [Booch et al. 2000]. The environment for MP
development may have a library of predefined views providing different visualizations for
schemas.

Fig. 3. a) Example of a composed event trace for the simple_message_flow schema. b) An

architecture view for the simple_message_flow schema.

Another case of selecting event pairs is called asynchronous coordination. In this case the
coordination operation should be marked with a symbol <!>. For example,

COORDINATE <!> $x: E1 FROM A,
 $y: E2 FROM B
 DO ADD $x PRECEDES $y OD;

 6

Matching event sets from A and B should contain an equal number of selected events E1 and
E2, correspondingly. Selected sets of E1 and E2 may be totally ordered or not. But now the
resulting merged traces will include all permutations of events E2 from B paired with events
E1 from A, with the PRECEDES relation imposed on each selected pair. This assumes that
other constraints, like the partial ordering axioms from Appendix 1, are satisfied. Each
permutation yields one potential instance of a resulting trace for the schema deploying this
composition. Use of <!> may significantly increase the number of composed traces. In order to
reduce the exponential explosion, optimizations similar to symmetry reduction in model
checking tools may be considered for trace generation.

The composition operation may be considered as an abstract interaction (interface)
description for root behaviors. The separation of the interaction description from the
components behavior is an essential MP feature. The same component behavior may be
reused with different interaction descriptions – a useful composition/reuse aspect (see Sec. 7).

The COORDINATE operation supports a “cause-effect” refinement for the behavior of two
components and it bears a certain similarity to Aspect-Oriented Programming (AOP)
paradigm [Kiczales et al. 1997]. For example, the following AOP behavior could be modeled
by MP schema where event coordination implements AOP join point and advice coordination.

Suppose that the main stream of execution contains calls to methods M1 and M2 as join
points, and the aspect behavior requires a call to Prolog before, and to Epilog after each
method call as an advice. The corresponding MP model may look like the following.

Example 3.
ROOT Main: (* (M1 | M2) *);
ROOT PreAdvice: (* Prolog *);
ROOT PostAdvice: (* Epilog *);

COORDINATE $jp: (M1 | M2) FROM Main,
 $a1: Prolog FROM PreAdvice,
 $a2: Epilog FROM PostAdvice
 DO ADD $a1 PRECEDES $jp, $jp PRECEDES $a2 OD;

4.1 DATA ITEMS AS BEHAVIORS
Data items in MP are represented by actions (events) that may be performed on that data.
This principle follows the Abstract Data Type (ADT) concept introduced in [Liskov, Zilles
1974].

Example 4. Data flow.
SCHEMA Data_flow
ROOT Process_1: (* work write *);
ROOT Process_2: (* (read | work) *);
ROOT File: (+ write +) (* read *);

Process_1, File SHARE ALL write;
Process_2, File SHARE ALL read;

The behavior of the File requires write events to be completed before any read events, and
there should be at least one write event. The SHARE ALL composition operation ensures
that the schema admits only event traces where corresponding event sharing is implemented.

It is defined as following (here X, Y are root events, Z is an event type, and IN* is a transitive
closure of IN).

 7

X, Y SHARE ALL Z ≡ { v: Z | v IN* X } = { w: Z | w IN* Y }

Event sharing is yet another way of behavior coordination. It is assumed that shared events
may appear in the root event at any level of nesting.

The architecture view of this schema in Fig.4 (b) renders root interaction with a line where
the shared event name is attached as a label. At the architectural level data items are inputs
or outputs of activities and are modeled as operations that may be performed on them. This
is a simple and uniform concept. If bringing particular data values in the architecture model
is needed, for instance in the assertions describing some constraints on even traces, this can
be accomplished by using event attributes.

Fig. 4. a) An example of composed event trace for the Data_flow schema.

b) An architecture view for the Data_flow schema.

4.2 BEHAVIOR CONSTRAINTS
A set of behaviors (event traces) is defined by the root event rules, composition operations,
and some additional constraints.

Example 5. Stack behavior.
SCHEMA Stack
ROOT Stack_operation: (* (push | pop) *);

ENSURE FOREACH $x: pop FROM Stack_operation
 (Number_of (pop) before ($x) < Number_of (push) before ($x));

This schema specifies the behavior of a stack in terms of stack primitive operations. Let IN*
denote the transitive closure of the IN relation (similarly, PRECEDES* is a transitive closure
for PRECEDES). The ENSURE Boolean expression provides a condition that each acceptable
trace should satisfy. The domain of the universal quantifier is the set of all events e, such
that (e IN* Stack_operation). The function Number_of (pop) before ($x) yields the number of
pop events e such that (e PRECEDES* $x). The set of event traces specified by this schema
contains only traces that satisfy the constraint. This example presents a filtering operation
as yet another kind of behavior composition, and demonstrates an example of combining
imperative (event grammar) and declarative (Boolean expressions) features for behavior
specification.

 8

4.3 COMPONENTS AND CONNECTORS
Connectors and components, which are the core elements in traditional architecture
descriptions, can be uniformly modeled in MP as behaviors. The idea that connectors should
be elevated to first-class-citizen status on par with components is often discussed in the
literature, for example, in [Taylor et al. 2010].

Suppose that the communication between components is implemented via a buffer of size
max_buffer_size, and not necessarily all sent messages are consumed, i.e. some of them could
stay in the buffer indefinitely. Each message may be consumed no more than once, and the
order of receiving does not necessarily correspond to the order of sending. The root
Buffered_channel simulates the behavior of a connector between Task_A and Task_B.

Example 6.
SCHEMA Buffered_transaction
ROOT Task_A: (* Send *);
ROOT Task_B: (* Receive *);
ROOT Buffered_channel: {* (Send [Receive]) *} (Overflow | Normal);
 -- ordering between Send and possible Receive is specified here
Task_A, Buffered_channel SHARE ALL Send;
Task_B, Buffered_channel SHARE ALL Receive;

ENSURE FOREACH $x: Receive FROM Buffered_channel
 (Number_of (Send) before ($x) - Number_of (Receive) before ($x)) <= max_buffer_size;
ENSURE FOREACH $x: Overflow FROM Buffered_channel
 (Number_of (Send) before ($x) - Number_of (Receive) before ($x)) > max_buffer_size;
ENSURE FOREACH $x: Normal FROM Buffered_channel
 (Number_of (Send) before ($x) - Number_of (Receive) before ($x)) <= max_buffer_size;

Fig. 5. a) An example of event trace without overflow for the Buffered_transaction schema with

max_buffer_size = 3.
b) An architecture view for the Buffered_transaction schema

The view of both components and connectors as coordinated behaviors provides flexibility to
define hierarchical protocols for interactions between parts of the system.

 9

5. ENVIRONMENT’S BEHAVIOR
The following example demonstrates how to integrate the behavior model of an environment
with the behavior model of a system. The ATM_withdrawal schema specifies a set of
possible interactions between the Customer, ATM_system, and Data_Base.

Example 7. Withdraw money from ATM.
SCHEMA ATM_withdrawal
ROOT Customer: (* insert_card
 ((identification_succeeds
 request_withdrawal
 (get_money | not_sufficient_funds)) |
 identification_fails) *);

ROOT ATM_system: (* read_card validate_id
 (id_successful check_balance
 ((sufficient_balance dispense_money) |
 unsufficient_balance) |
 id_failed) *);

ROOT Data_Base: (* (validate_id | check_balance) *);

Data_Base, ATM_system SHARE ALL validate_id, check_balance ;

COORDINATE $x: insert_card FROM Customer,
 $y: read_card FROM ATM_system
 DO ADD $x PRECEDES $y OD;
COORDINATE $x: request_withdrawal FROM Customer,
 $y: check_balance FROM ATM_system
 DO ADD $x PRECEDES $y OD;
COORDINATE $x: identification_succeeds FROM Customer,
 $y: id_successful FROM ATM_system
 DO ADD $y PRECEDES $x OD;
COORDINATE $x: get_money FROM Customer,
 $y: dispense_money FROM ATM_system
 DO ADD $y PRECEDES $x OD;
COORDINATE $x: not_sufficient_funds FROM Customer,
 $y: unsufficient_balance FROM ATM_system
 DO ADD $y PRECEDES $x OD;
COORDINATE $x: identification_fails FROM Customer,
 $y: id_failed FROM ATM_system
 DO ADD $y PRECEDES $x OD;

 10

Fig. 6. a) An example of event trace for the ATM_withdrawal schema.

b) An architecture view for the ATM_withdrawal schema.
If the view of the whole system’s behavior emphasizing the interaction between the parts
(components) can be visualized as in Fig. 6, (b), then the view of the root’s standalone
behavior can be rendered as a UML Activity Diagram. Since event aggregate patterns
(iterations, alternatives, sets) in MP are well structured, it is possible to use Nassi–
Shneiderman diagrams [Nassi, Shneiderman 1973] as yet another kind of view.

An event trace generated from the schema can be considered as a use case example. The
event trace on Fig. 6, (a) can be viewed also as an analog of UML sequence diagram’s “swim
lanes” for Customer and ATM_system interactions. MP models can be integrated into the
standard frameworks, like UML, SysML, DoDAF, providing the level of abstraction
convenient for architecture models, where MP focuses on the interaction aspects.

The concept of environment in an architecture model includes behavior of other systems,
hardware, business processes, and any other behaviors, which are not part of the system
under consideration, but may interact with it. In particular, this approach may be of use for
analyzing emergent behaviors of System of Systems, when the architecture model of SoS is
composed from the models of its components.

6. MULTI-TIER ARCHITECTURE MODELING
Choices of platform, operating system, middleware, database, and such are major architectural choices
[Kruchten 2001]. The following example outlines an approach to multilayer architecture modeling. An
event in the Top_layer deploys several events in Bottom_layer. This may involve 1..n multiplicity for
event coordination.

Example 8.
SCHEMA two-tier-architecture
ROOT Top_layer: (* top_event anything_else *);
ROOT Bottom_layer: (* bottom_event anything_else *);

 11

COORDINATE $x: top_event FROM Top_layer,
 $y: (+ bottom_event +) FROM Bottom_layer
 DO ADD $y IN $x OD;

The coordination is based on IN relation. It models the case when one top_event contains one or more
bottom_event. To limit the number of bottom_event repetitions, iteration multiplicity can be used, like:
 $y: (* <1..3> bottom_event *)

7. COMPONENT REUSE WITH THE JOIN OPERATION
The following compiler’s front-end architecture model is inspired by [Perry, Wolf 1992], [Shaw, Garlan
1996] and the unforgettable picture of compiler architecture from the “Dragon Book” [Aho, Sethi, Ullman
1986](page 13). The following examples demonstrate component reuse with different interaction patterns
and emphasize the advantages of separation between the specification of component behavior and the
specification of interactions between components.

7.1 COMPILER FRONT END IN BATCH PROCESSING MODE
The Lexer schema models the behavior of a typical LEX machine.

SCHEMA Lexer
ROOT Text_Input: (* (String | Unget_char) *);
 String: (+ Get_char +);

ROOT Token_processing: (* Token_recognition *);
 Token_recognition: {+ RegExpr_Match +}
 (+ Unget_char +) Fire_rule;
 RegExpr_Match: (+ Get_char +);
 Fire_rule: [Put_token];

Text_Input, Token_processing SHARE ALL Unget_char;

COORDINATE $t: Token_recognition FROM Token_processing,
 $s: String FROM Text_Input
 DO
 COORDINATE <!> $r: RegExpr_Match FROM $t
 DO $r, $s SHARE ALL Get_char OD
 OD;

The Token_recognition event defines Lexer’s behavior according to the semantics when a regular
expression in each LEX rule is applied independently, and hence no ordering on RegExpr_Match events is
imposed. Each RegExpr_Match performs one or more Get_char until all finite automata involved in the
token recognition enter the Error state. Then the winner is selected and look-ahead characters beyond the
recognized lexeme are returned into the input stream by Unget_char. The String event contains all
Get_char events involved in this cycle of recognizing a token, including characters returned back into the
input stream. Some recognized tokens, like spaces or comments, don’t trigger Put_token.

The second COORDINATE composition operation provides for a traversal of each instance of
RegExpr_Match within the given Token_recognition (which are unordered, hence the use of <!>). This
ensures that all instances of RegExpr_Match share all Get_char with the String coordinated with the
Token_recognition.

The following ENSURE constraint requires that at least one input character will be consumed by
Token_recognition.

 12

ENSURE FOREACH $t: Token_recognition FROM Token_processing
 (Number_of(Get_char) in ($t) > Number_of(Unget_char) in ($t));

The join operation for schemas looks like:

SCHEMA A
INCLUDE B;
NEW B;
Roots for A
Additional constraints and composition operations involving roots from both A and B

The INCLUDE brings schema B into scope, and NEW B creates a new instance of schema B. The resulting
schema A contains roots defined in A and roots defined in B, merges within its scope constraints and
composition operations defined in B, and may have additional constraints and composition operations
involving all roots.

Appendix 1 contains Base schema specifying properties for the basic relations IN* and PRECEDES*. It is
assumed that any MP schema joins Base. This operation on schemas is inspired by the Z schema
expressions concept [Spivey 1992]. A typical use of such schema composition may be for assembling the
architecture of a System-of-Systems from the architectures of its constituent systems.

The following schema provides a model for bottom-up parsing and reuses stack behavior (represented by
push and pop events) defined in Example 5.

SCHEMA Parser
INCLUDE Stack;
NEW Stack;

ROOT Parsing: push -- push the start symbol on the stack
 (* Get_token (* Reduce *) Shift *) [Syntax_error];
 Shift: push ;
 Reduce: (+ pop +) push Put_node;

ROOT Parse_Tree: (* Put_node *);
 --Put_node event represents the construction of a parse tree.

Parsing, Stack SHARE ALL pop, push;
Parsing, Parse_Tree SHARE ALL Put_node;

To merge Lexer and Parser schemas into a single schema we need to tell how those components interact.
The following schema specifies batch processing.

Example 9.
SCHEMA Batch_processing
INCLUDE Lexer, Parser;
NEW Lexer;
NEW Parser;
ROOT Batch: Produce_tokens Consume_tokens;
 Produce_tokens: (* Put_token *);
 Consume_tokens: (* Get_token *);

Batch, Lexer SHARE ALL Put_token;
Batch, Parser SHARE ALL Get_token;

ENSURE Number_of(Put_token) in (Batch) >= Number_of(Get_token) in (Batch);

 13

The ordering of Produce_tokens and Consume_tokens events ensures that production of the whole set of
tokens will precede the consumption. The following diagram represents a view of the Batch_processing
architecture. Black arrows stand for the IN relation, wider lines represent abstract interaction defined by the
composition operation SHARE ALL, hexagons represent schemas, and rectangles represent root events.

Fig. 7. An architecture view on the Compiler’s front end in batch mode.

7.2 COMPILER’S FRONT END IN INCREMENTAL MODE
Yet another possible interaction is a case in which Parser requests the next token and triggers an event
inside Lexer, delivering a token (the usual LEX/YACC operation pattern). The schema
Incremental_processing represents such operation mode. The IN relation imposed between Put_token
and Get_token events reflects the dependency or synchronization between Lexer and Parser behaviors
involved in the token request/delivery. In fact, the Get_token event is now refined with the Put_token
event. Incremental_processing schema reuses Lexer and Parser schemas, but defines different interaction
pattern.

Example 10.
SCHEMA Incremental_processing
INCLUDE Lexer, Parser;
NEW Lexer;
NEW Parser;

COORDINATE $x: Token_recognition FROM Token_processing,
 $y: Get_token FROM Parsing
 DO ADD $x IN $y OD;

The merged architecture defines a set of event traces with structure inherited from Lexer and Parser, into
Incremental_processing schema with the additional constraints for sharing the token processing events.
The following diagram represents a view of the Incremental_processing architecture.

Fig. 8. An architecture view on the Compiler’s front end in incremental mode.

 14

8. SCHEMA REUSE WITH THE MAP COMPOSITION
OPERATION

Reuse of a behavior defined by a schema may require mapping of some activities in one schema onto
activities in another, thus defining a composite behavior. The MAP operation establishes event aliases
(event mapping) between two instances of behaviors. Example 11 provides an architecture model for a
user’s login in order to receive access to a system’s services. This solution is reused as another
architecture’s component in Example 12.

Example 11
The User requests access to a System’s services by providing his general Id. The System requests that
specific credentials be provided. If the supplied credentials are valid, the System authorizes the User to
access the services, otherwise the System notifies the User that the received credentials are invalid and the
User may re-attempt access up to two more times. At any time the User may decide to abandon the access
request.

SCHEMA Authentication_Scenario
ROOT User: request_access
 (* creds_invalid request_access *)
 (creds_valid (run_services | abandon_access_request) |
 creds_invalid (attempt_exhausted| abandon_access_request));
 request_access: provide_general_ID provide_unique_ID;

The alternative for abandon_access_request always includes an interaction with the System. Absence of
the interaction triggers long_wait_for_User in the System.

ROOT System: request_unique_ID
 [creds_invalid request_unique_ID
 [creds_invalid request_unique_ID
 [creds_invalid attempt_exhausted
 invalid_creds_notice cancel_access_request]]]
 [(creds_valid (authorize_access run_services |
 long_wait_for_User cancel_access_request) |
 creds_invalid long_wait_for_User cancel_access_request)
] ;

User, System SHARE ALL creds_valid, creds_invalid,
 attempt_exhausted, run_services;

COORDINATE $x: provide_general_ID FROM User,
 $y: request_unique_ID FROM System
 DO ADD $x PRECEDES $y OD;

COORDINATE $x: request_unique_ID FROM System,
 $y: provide_unique_ID FROM User
 DO ADD $x PRECEDES $y OD;

Example 12
The task is to reuse the behavior from the Authentication_Scenario schema. The INCLUDE statement
brings Authentication_Scenario schema into the context of Processing schema. This means that all
constraints specified in the Authentication_Scenario also will be included.

SCHEMA Processing
INCLUDE Authentication_Scenario;
ROOT Customer: (* work_session *);

 15

 work_session: (+ log_in +) (login_succeeds work | login_fails);
 work: (* (read | write) *);

ROOT Login_service: (* credentials_check *);
 credentials_check: (authorize_access | refuse_access);

ROOT DataBase: (* (read | write) *);

Customer, DataBase SHARE ALL read, write;

COORDINATE $a: authorize_access FROM Login_service,
 $b: login_succeeds FROM Customer
 DO ADD $a PRECEDES $b OD;

COORDINATE $a: refuse_access FROM Login_service,
 $b: login_fails FROM Customer
 DO ADD $a PRECEDES $b OD;

The following COORDINATE specifies the reuse of the Authentication_Scenario schema and imposes a
coordination between each (synchronized) pair of events work_session and credentials_check from
Processing schema and a new instance of the Authentication_Scenario behavior. Synchronized
COORDINATE composition requires the number of work_session and credentials_check events in the
trace to be the same, and each of them has to be totally ordered within the corresponding root.

Since NEW Authentication_Scenario appears in the COORDINATE loop body, a new instance of a
complete schema’s Authentication_Scenario trace is created at each COORDINATE iteration to match
events selected for coordination. The nested COORDINATE operation follows the nesting of coordinated
source and target events. The MAP is yet another event composition performed within the COORDINATE
operation. Each A AS B pair establishes A and B as aliases for the same event instance.

COORDINATE $w: work_session FROM Customer,
 $ch: credentials_check FROM Login_service,
 DO
 $a: NEW Authentication_Scenario;
 MAP $w AS User FROM $a,
 $ch AS System FROM $a,
 work FROM $w AS run_services FROM $a,
 authorize_access FROM Login_service
 AS authorize_access FROM $a,
 refuse_access FROM Login_service
 AS cancel_access_request FROM $a;
 COORDINATE $log: log_in FROM $w,
 $req: request_access FROM (User FROM $a)
 DO
 MAP $log AS $req
 OD
 OD;

Fig. 9 gives an example of event trace generated from the Processing schema. Only IN and PRECEDES
relations directly specified in the grammar rules or in composition operations are shown. For instance, the
PRECEDES* relation between provide_unique_ID and corresponding creds_valid or creds_invalid
is implied by Axiom 9 (Appendix 1).

 16

Fig. 9. Example of event trace when Customer gets access and runs services after one

unsuccessful login attempt.

Fig. 10. Architecture view for the Processing schema with reused components from

Authentication_Scenario.

MAP AS can be considered a generalization of the SHARE ALL composition. For atomic events it is
equivalent to SHARE ALL. For example,

A, B SHARE ALL c;
is equivalent to
COORDINATE <!> $c1: c FROM A,
 $c2: c FROM B
 DO MAP $c1 AS $c2 OD;

For composite events MAP AS means merging the behaviors as independent threads, which can be
coordinated further if needed. If original event structures are
A: pattern1;
B: pattern2;

then MAP A AS B establishes an event AB (for which both A and B are aliases).
AB: { pattern1, pattern2 };

 17

9. EVENT PARTITIONING AND COORDINATION
Event partitioning may be needed to specify activities like competitive resource sharing at a high level of
abstraction, without going into the implementation details. The following example demonstrates event
partitioning rendered in the SHARE ALL composition.

Example 13. Communicating via unreliable channel.
 SCHEMA AtoB
 ROOT TaskA: (* A_sends_request_to_B
 (A_receives_data_from_B | A_timeout_waiting_from_B) *);
-- it is assumed that A is the leading actor

ROOT TaskB: (* (B_working | request_bounces_back) *);
 B_working: B_receives_request_from_A B_sends_data_to_A;
-- request_bounces_back event simulates the connector's unsuccessful attempt to connect to B.

 ROOT Connector_A_to_B: (* A_sends_request_to_B
 (B_receives_request_from_A |
 [request_bounces_back] A_timeout_waiting_from_B)
 *);
-- A_timeout_waiting_from_B may happen either because Connector_A_to_B just fails or because TaskB
is not working.
ROOT Connector_B_to_A: (* B_sends_data_to_A
 (A_receives_data_from_B | A_timeout_waiting_from_B) *);

TaskA, Connector_A_to_B SHARE ALL A_sends_request_to_B;
TaskB, Connector_A_to_B SHARE ALL B_receives_request_from_A, request_bounces_back;
TaskB, Connector_B_to_A SHARE ALL B_sends_data_to_A;
TaskA, Connector_B_to_A SHARE ALL A_receives_data_from_B;

TaskA, Connector_A_to_B |+| Connector_B_to_A SHARE ALL A_timeout_waiting_from_B;

Operator |+| is used in the context of SHARE ALL as an exclusive union (a partitioning of events, XOR-
like operation) with respect to the sharing of a specific event. The event A_timeout_waiting_from_B
cannot belong to both Connector_A_to_B and Connector_B_to_A, although sharing of other events
between them may be permitted.

10. REACTIVE EVENT INTEGRATION
Reactive component integration, or implicit invocation [Shaw, Garlan 1996] has been introduced in
architecture techniques to capture situations when an activity is triggered by an event arriving from the
environment or from another component. The exception handling mechanism in programming languages
and the interrupt operator in CSP [Roscoe 1997] provide examples of such control flow.

In MP, the behavior model event stream defined by the event grammar rule may be interrupted at any place
by another event that triggers continuation of the event flow using another event pattern. This behavior
pattern may be modeled with the WHEN clause. The <| and |> delimiters determine the scope of events,
which could be interrupted.

<| event_pattern 'WHEN' when_unit , when_unit , … |>

The when_unit contains the triggering event’s name followed by the event pattern for continuation.

event_name ==> pattern_list

When_unit can be interrupted by another WHEN event. This option may be computationally expensive for
event trace generation and should be used with care, to specify for instance an event that may occur in the

 18

environment at any unpredictable moment.

The meaning of the WHEN event pattern for trace generation can be defined with the concept of CUT(E)
as a pattern specifying possible initial segments of an event trace for the event pattern E, when E has been
interrupted while generating its event trace.

1) CUT(A) = [A] if A is atomic event pattern
2) CUT(A) = [A: CUT(Body)] if A is a composite event A: Body
3) CUT(A B) = (CUT(A) | A CUT(B))
4) CUT((A | B)) = (CUT(A) | CUT(B))
5) CUT((* <n..m> E *)) = (* <n..m-1> E *) CUT(E)
6) CUT({A, B}) = { CUT(A), CUT(B) }
7) CUT({* <n..m> E *}) = {* <n..m> CUT(E) *}
8) CUT((+ E +)) = (* E *) CUT(E)
9) CUT({+ E +}) = {+ CUT(E) +}

The CUT() is an abbreviation for an otherwise cumbersome composition of alternative event patterns
inserting the triggering event in all possible positions. The WHEN clause event pattern can be defined as:
<| P WHEN A1 ==> A2, B1 ==> B2, … |> =
 (P |
 CUT(P) (* (A1 CUT(A2) | B1 CUT(B2) | …) *) (A1 A2 | B1 B2 | …))

Example 14. A process that launches and terminates another process.
Process_A launches a single instance of Process_B, which proceeds concurrently and may either terminate
normally, or be terminated by Process_A as an emergency. In both cases Process_B may be launched later
again by Process_A.

SCHEMA Invoke_and_terminate
ROOT Process_A: (* Launch_B do_something [Abort_B] *);

ROOT Process_B: (* (<| Idle WHEN Abort_B ==> |> |
 Launch_B <| (* b1 b2 b3 *) WHEN Abort_B ==> wrap_up |>)
 *);
Process_A, Process_B SHARE ALL Launch_B, Abort_B ;

When Process_B is Idle, there is no response to Abort_B. The whole WHEN clause around Idle can be
omitted, since MP model defines only acceptable event traces.

11. EVENT ATTRIBUTES
Event attributes are immutable values associated with event instances. Timing attributes, like time of
beginning, time of end, and duration may be associated with any event instance, with obvious constraints
on their values implied by PRECEDES and IN relations. If event duration attributes are provided in the
model, it becomes possible to perform different timing estimates for event traces, to search for critical paths
(similar to the PERT charts [Fazar 1959]), and to obtain average timing estimates for the sets of event
traces.

Assertions involving event attributes may impose additional constraints on a system’s behavior. For
example, events used as other event attributes may be useful to specify a system’s topology, like networks
and other graphs.

Example 15. Events used as event attributes.
Dining Philosophers problem (http://en.wikipedia.org/wiki/Dining_philosophers_problem) is often used to
illustrate synchronization issues and the techniques for resolving them. The following MP model provides
abstract specification of all correct behaviors, but does not provide implementation details.

 19

The example demonstrates the use of events as attributes of other events. Attribute names are binary
relations, and syntax and semantics of Alloy relational logic notation [Jackson 2006] are used in this
example to describe constraints involving the attribute relations.

Some Alloy-specific syntax:

• the disj keyword implies that the attribute values (events in this example) are disjoint;
• ~r is a transposition of binary relation r;
• ^r stands for the transitive closure of binary relation r;
• the dot, like in left_user.right stands for the left-associative join operator in Alloy;
• && denotes the set intersection operation in Alloy.

SCHEMA Dining_Philosophers
ROOT Philosophers: {* <5> Philosopher *};
 Philosopher: (* think eat *)
 ATTRIBUTES { -- attributes of the Philosopher event
 disj left, right: Philosopher;
 disj left_fork, right_fork: Fork; };

Using events as attributes of other events extends the standard relations PRECEDES and IN, for instance,
to model interacting components’ topology and other dependencies between events.

Event grammar rules appear to be yet another event attribute with a specific syntax and without attribute
name. By assigning attribute names to the behavior rules, it may be possible to define several different
behaviors as attributes and to make the selection of a behavior attribute dependent on other attributes. This
may be used to specify dynamic and product line architectures.

 eat: { use_left_fork, use_right_fork };
 use_left_fork: use_fork;
 use_right_fork: use_fork;

No ordering is required for use_left_fork, use_right_fork activities.

ROOT Forks: {* <5> Fork *};
 Fork: (* (idle | use_fork) *)
 ATTRIBUTES {
 disj left_user, right_user: Philosopher; };

The following constraints provide topology specification as filters for trace generation.

Several attributes are mutually symmetric relations.
ENSURE (left = ~right and left_fork = ~right_user and right_fork = ~left_user);

Philosophers form a cycle. Standalone Philosopher event name stands here for the set of all events of this
type in the event trace (following Alloy conventions).
ENSURE FOREACH $p: Philosopher FROM Philosophers ($p.^left = Philosopher);

Neighbors share the same Fork.
ENSURE FOREACH $f: Fork FROM Forks ($f.left_user.right.left_fork = $f);

Philosophers behavior is synchronized via event sharing. A |+| B is an exclusive union of events w.r.t.
SHARE ALL, which prevents A and B from sharing the same instance of the event E (partition for
sharing) in (A |+| B), C SHARE ALL E.

COORDINATE <!> $p: Philosopher FROM Philosophers

 20

 DO
 (use_left_fork && ^IN.$p) |+| (use_right_fork && ^IN.($p.left)),
 $p.left_fork SHARE ALL use_fork
 OD;

12. A FEW WORDS ON ASSERTIONS AND QUERIES
An event trace represents an example of particular execution of the system or a use case,
especially if the behavior of the environment is included. Event traces can be effectively
derived from the event grammar rules and then adjusted and filtered according to the
composition operations and constraints in the schema. This justifies the term executable
architecture model. For a given MP schema it is possible to obtain all valid event traces up to
a certain limit. Usually such a limit (scope) may be set by the maximum total number of
events within the trace, or by the upper limit on the number of iterations in grammar rules
(recursion can be limited in a similar way). For many purposes a modest limit of 3 iterations
will be sufficient. This process of generating and inspecting event traces for the schema is
similar to the traditional software testing process.

In the case of MP models it is possible to automatically generate all event traces within the
given scope (exhaustive testing). Careful inspection of generated traces (scenarios/use cases)
may help developers identify undesired behaviors. Usually it is easier to evaluate an example
of behavior (particular event trace) than the generic description of all behaviors (the schema).
The Small Scope Hypothesis [Jackson 2006] states that most errors can be demonstrated on
relatively small counterexamples.

The assertion language for MP requires a rigorous and precise discussion, and the use of
assertion checking for MP model testing and debugging is not subject of this paper. Here are
some considerations outlining the possible approach.

The event trace is a set of events and the assertion formalism can embrace the traditional
predicate calculus notation. Properties of behavior can be formalized as assertions about
traces (similar to the ENSURE constraint), and verified exhaustively for all event traces
within the scope, yielding the counterexamples when the assertion is violated. For example,
hazard states can be specified as a result of certain interactions between the system and its
environment, and the traces within scope can be searched for a trace that matches the
hazard scenario. Since assertion checking is performed on a complete event trace, it becomes
possible to refer to events following a given event to specify fairness conditions. This brings
the expressiveness of MP assertions closer to temporal logic [Pnueli 1981]. For instance,
simple_message_flow schema (Example 2) can be annotated with the assertion

ASSERT FOREACH $x: send FROM Task_A Has_following(receive) ($x);

where Has_following(receive) predicate is based on the PRECEDES* relation.

In a similar fashion queries can be performed on the traces, providing different kinds of
statistics. For example, collecting a representative amount of event traces and calculating
durations for event sequences of interest can provide system performance estimates.

Another example of an add-on in MP model may be the probability of an event in alternatives,
like ([0.3] A | [0.7] B) establishing that A happens with the probability 0.3 and B with
probability 0.7. Now it becomes possible to estimate probabilities of certain event traces
within a given scope, e.g. probability for the system to get into a hazard state. This opens a
direction for system simulation and statistical experiments based on executable systems

 21

architecture models and their environment models. [Songzheng Song et al. 2014] has an
example of such experiment with MP model using PAT model checker [Jun Sun et al. 2009].

Assertions and queries may be generic for a class of architecture models and could be reused,
as Appendix 1 suggests.

13. IMPLEMENTATION
An online demo of the early MP version Eagle6 (on-line editor, event trace generation and
visualization, simple query processor, and rudimentary event trace probability estimation) is
available at http://eagle6modeling.riverainc.com/. This web site also provides several complete
examples.

The MP prototype [Auguston, Whitcomb 2010] has been implemented as a compiler
generating an Alloy model [Jackson 2006] from the MP schema and then running the Alloy
Analyzer to obtain event traces and to perform assertion checks. It has benefited from Alloy’s
relational logic formalism and visualization tools. Performance depends on the performance
of SAT solver used by Alloy Analyzer.

Direct trace generation from the event grammar can be accomplished quite efficiently, and
the process of generating all traces for the given schema within a given scope can be roughly
described by the following procedure.

1. For each root in the schema derive a collection of all possible event traces within a given

scope.
2. Select one trace from each root’s collection, assembling the resulting trace from root traces

with matching numbers of shared/coordinated events.
3. Apply schema’s composition operations and filters. If the resulting composed trace is

consistent with the schema’s filters (including Axioms from Appendix 1) and composition
operations, it is included into the schema’s trace collection. Otherwise, proceed with the
next selection (step 2).

This process has potential for optimization by applying early pruning whenever possible. The
main optimization ideas stem from the considerations that composition operations
(COORDINATE, SHARE ALL, and MAP) usually require an equal number of selected events in
the matching traces. Root traces can be sorted according to the number of matching events to
avoid selection of inconsistent root traces in Step 2. Rearrangement of composition
operations and filters may also provide a significant speed up in the trace assembly.

A prototype trace generator has been built by converting MP schemas into a C++ code and
then compiling and running the generated C++ code to obtain all event traces within a given
scope. This architecture solution is similar to the one implemented in the SPIN/PROMELA
model checker (using C as a target language) [Holzmann 2004].

Several optimizations mentioned above have been implemented. A sample run on an iMac
with 2.8 GHz/4 GB yields the following performance for a schema example with
approximately 60 lines of MP source text, including 9 roots, 10 composite event types, 12
atomic event types, 12 SHARE ALL compositions, and for a maximum scope of 3 for iterations.
Actually, it is an architecture model for the MP -> C++ prototype itself, the complete MP code
for this model is available as Example 9 in the MP Crash Course on
http://wiki.nps.edu/display/MP and can be executed on Eagle6 prototype as well.

• Total 1328 traces generated, with total 79836 events, average 60.1175 events/trace, max

trace length 69;

 22

• Initial search space (number of all root traces before filtering) 35100;
• Selection ratio 3.78348%, generation speed 18021.8 events/sec;
• Elapsed time (including compilation of the generated C++ code) 4.42997 sec.

14. CONCLUSIONS
MP executable architecture models provide a high level of abstraction for testing, verifying,
and documenting system architecture early in the design phase. The main advantages may
be summarized as follows.

• MP focuses a developer’s attention on the behavior of the system early in the process.
• The ability to separate behavior models of components from the models of interactions

between them simplifies the modeling process and facilitates the reuse of architecture
models.

• The schema framework is amenable to stepwise architecture refinement, reuse,
composition, visualization, and application of automated tools for sanity checks.

• Executable system architecture models integrated with environment behavior models
can be helpful for identifying emergent behaviors.

• The ability to generate an exhaustive set of use cases (within a given scope) for
requirements specification and for testing the system’s implementation. This emphasizes
the role of architecture models as a bridge between the requirements and design.

• The pseudo-code style of use cases (event traces) derived from MP schema provides a
uniform communication vehicle for different stakeholders. It may be easier for humans,
especially not skilled in formal specification notation, to understand and inspect
examples of system behavior, neither to deal with the complete and formal MP schema,
from which these use cases have been derived. Assertion checking can automatize search
for counterexamples violating expected behavior properties.

• The ability to extract different architecture views from the same MP architecture model.
• The ability to develop performance estimates based on statistics obtained from the

generated event traces.

14.1 WHAT IS NEXT?
Architecture modeling has substantial consequences for the next phases in software
design process. Here are some threads of research stemming from the ideas described
above.

• Testing automation. Monitoring the behavior of an implemented system using the MP
executable architecture model as an oracle. If the source code of implementation can be
instrumented to mark which segments of code start and end corresponding MP events, it
becomes possible to log actual execution traces (using [Lamport 1978] timestamps for
partial ordering monitoring), and to check the actual traces for consistence with expected
behaviors. Test cases could be constructed from the MP event traces using the
environment’s behavior as the source for inputs and deriving the oracle from the
corresponding MP behavior event trace.

• Developing methods and techniques for static analysis of the architecture model, for
example, by verifying MP models with a model checking tool. The first prototypes are
presented in [Jiexin Zhang et al. 2012] and [Songzheng Song et al. 2014].

• Introducing metrics for MP models for system cost estimates based on the architecture
models. Function Points [Albrecht 1979] can be identified as abstract interactions
between components and between the system and its environment in the MP model.

 23

Consequently FP analysis and COCOMO II [Boehm et al. 2000] techniques could be
applied for the early system cost estimates.

• Statistical simulation and analysis of system’s behavior models [Songzheng Song et al.
2014].

• Development of reusable architecture patterns and architecture views libraries.
• Development of business process models in MP. Existing process modeling frameworks

(BPEL, BPMN [Grosskopf et al. 2009], IDEF) usually follow the “single flowchart”
paradigm. MP separates component behaviors from the component interaction, and thus
provides a multidimensional picture of concurrent behaviors, with overlapping threads of
process phases, participating actors, and other environment behaviors. Exhaustive
scenario generation, assertion checking, and queries supported by automated tools (like
critical path calculation on PERT charts [Fazar 1959]) could be useful for business
process model verification and validation within the MP framework.

ACKNOWLEDGMENTS
Joey Rivera [Rivera 2010] and Alex Gociu were instrumental in the implementation of the MP online demo
Eagle6. The diagrams in Fig. 1 - 10 have been designed with the yEd Graph Editor
(http://www.yworks.com/en/products_yed_about.html).

The author would like to thank Kristin Giammarco and Monica Farah-Stapleton, for valuable feedback.
Kristin’s Giammarco public web site for Monterey Phoenix project at the NPS Department of Systems
Engineering (http://wiki.nps.edu/display/MP) contains an MP Crash Course for Eagle6 with additional
collection of executable examples.

This research was funded in part by the Consortium for Robotics and Unmanned Systems Education and
Research (CRUSER http://cruser.nps.edu). Views and conclusions in this article are those of the author and
should not be interpreted as representing the official policies, either expressed or implied, of the U.S.
government, of the U.S. Department of Defense, or of the U.S. Department of Navy.

APPENDIX 1
Base schema specifies a filter for every MP event trace and ensures that it satisfies partial order axioms for
IN* and PRECEDES* relations. It uses predefined generic event type Event. The special variable $Trace
stands for the whole trace specified by a schema. We use symbols ¬, ∧, ⇒ for Boolean operations here.

SCHEMA Base
There are no root events, this schema is used only to bring the following filter into derived schema.

ENSURE FOREACH $a, $b, $c: Event FROM $Trace

-- Mutual Exclusion of Relations
 ($a PRECEDES* $b ⇒ ¬($a IN* $b)) ∧ --Axiom 1)
 ($a PRECEDES* $b ⇒ ¬($b IN* $a)) ∧ --Axiom 2)
 ($a IN* $b ⇒ ¬($a PRECEDES* $b)) ∧ --Axiom 3)
 ($a IN* $b ⇒ ¬($b PRECEDES* $a)) ∧ --Axiom 4)

-- Non-commutativity
 ($a PRECEDES* $b ⇒ ¬($b PRECEDES* $a)) ∧ -- Axiom 5)
 ($a IN* $b ⇒ ¬($b IN* $a)) ∧ -- Axiom 6)
-- Irreflexivity for PRECEDES* and IN* follows from non-commutativity.

-- Transitivity
 (($a PRECEDES* $b) ∧ ($b PRECEDES* $c) ⇒ ($a PRECEDES* $c)) ∧ -- Axiom 7)
 (($a IN* $b) ∧ ($b IN* $c) ⇒ ($a IN* $c)) ∧ -- Axiom 8)

-- Distributivity
 (($a IN* $b) ∧ ($b PRECEDES* $c) ⇒ ($a PRECEDES* $c)) ∧ -- Axiom 9)

 24

 (($a PRECEDES* $b) ∧ ($c IN* $b) ⇒ ($a PRECEDES* $c)); -- Axiom 10)

Each MP schema uses Base as a default extension. As a result, all event traces will be
filtered for compliance with the Axioms. For example, the following schema has an empty set
of traces, because it violates Axiom 5 for partial ordering.
SCHEMA Wrong
INCLUDE Base;
NEW Base;
ROOT A: a b;
ROOT B: b a;
A, B SHARE ALL a, b;

REFERENCES
ABOWD, G., ALLEN, R., GARLAN, D., 1995, Formalizing Style to Understand Descriptions of Software

Architecture, ACM Transactions on Software Engineering and Methodology 4(4): 319-364
ABOWD, G., BASS, L., CLEMENTS, P., KAZMAN, R., NORTHROP, L., ZAREMSKI, A., 1997, Recommended Best

Industrial Practice for Software Architecture Evaluation, Technical Report, CMU/SEI-96-TR-025.
AHO, A., SETHI, R., ULLMAN, J., 1986, Compilers, Principles, Techniques, and Tools, Addison-Wesley
ALBRECHT, A. J., Measuring Application Development Productivity, Proceedings of the Joint SHARE, GUIDE, and

IBM Application Development Symposium, Monterey, California, October 14–17, IBM Corporation (1979), pp.
83–92.

ALLEN, R., 1997, A Formal Approach to Software Architecture, Ph.D. Thesis, Carnegie Mellon University, CMU
Technical Report CMU-CS-97-144, May 1997

ALLEN, R., GARLAN, D., 1997, A Formal Basis for Architectural Connection. ACM Transactions on Software
Engineering and Methodology, Vol. 6(3): 213-249, July 1997.

AUGUSTON, M., 1991, FORMAN - Program Formal Annotation Language, in Proceedings of 5th Israel Conference
on Computer Systems and Software Engineering, Herclia, May 27-28, IEEE Computer Society Press, 1991,
pp.149-154.

AUGUSTON, M., 1995, Program Behavior Model Based on Event Grammar and its Application for Debugging
Automation, in Proceedings of the 2nd International Workshop on Automated and Algorithmic Debugging,
Saint-Malo, France, May 1995.

AUGUSTON, M., JEFFERY, C., UNDERWOOD, S., 2002, A Framework for Automatic Debugging, in Proceedings of
the 17th IEEE International Conference on Automated Software Engineering, September 23-27, 2002,
Edinburgh, UK, IEEE Computer Society Press, pp.217-222.

AUGUSTON, M., MICHAEL, B., SHING, M., 2006, Environment Behavior Models for Automation of Testing and
Assessment of System Safety, Information and Software Technology, Elsevier, Vol. 48, Issue 10 , October 2006,
pp. 971-980

AUGUSTON, M., 2009, Software Architecture Built from Behavior Models, ACM SIGSOFT Software Engineering
Notes, 34:5.

AUGUSTON, M., 2009, Monterey Phoenix, or How to Make Software Architecture Executable, OOPSLA’09/Onward
conference, Orlando, Florida, OOPSLA Companion, October 2009, pp.1031-1038

AUGUSTON, M., WHITCOMB, C., 2010, System Architecture Specification Based on Behavior Models, in
Proceedings of the 15th ICCRTS Conference (International Command and Control Research and Technology
Symposium), Santa Monica, CA, June 22-24, 2010

AUGUSTON, M., WHITCOMB, C., 2012, Behavior Models and Composition for Software and Systems Architecture,
ICSSEA 2012, 24th International Conference on Software & Systems Engineering and their Applications,
Telecom ParisTech, Paris, October 23-25, 2012

BASS, L., CLEMENTS, P., KAZMAN, R., 2003, Software Architecture In Practice, 2nd Edition, Boston, Addison-
Wesley.

BOEHM, B., ABTS, C., BROWN, A. W., CHULANI, S., CLARK, B.K., HOROWITZ, E., MADACHY, R., REIFER,
D.J., and STEECE, B. Software Cost Estimation with COCOMO II (with CD-ROM). Englewood Cliffs,
NJ:Prentice-Hall, 2000.

BOOCH, G., JACOBSON, I., RUMBAUGH, J., 2000, OMG Unified Modeling Language Specification,
http://www.omg.org/docs/formal/00-03-01.pdf

BOSCH, J., 2000, Design and Use of Software Architectures, ACM Press and Addison-Wesley.
BRUEGGE, B., HIBBARD, P., 1983, Generalized Path Expressions: A High-Level Debugging Mechanism, The

Journal of Systems and Software 3, 1983, pp. 265-276.

 25

CARRIERO, N., GELERNTER, D., 1992, “Coordination Languages and their Significance”, Communications of the
ACM 35 (2), pp. 97-107.

CAMPBELL, R.H., HABERMANN, A.N., 1974, The Specification of Process Synchronization by Path Expressions,
Lecture Notes in Computer Science, No. 16, Apr. 1974, pp. 89-102.

DOBRICA, L., NIEMELA, E., A Survey on Software Architecture Analysis Methods, 2002, IEEE Transactions on
Software Engineering, Vol.28, No 7, pp.638-653.

FAZAR, W., "Program Evaluation and Review Technique", The American Statistician, Vol. 13, No. 2, (April 1959),
p.10.

FEILER, P., GLUCH, D., HUDAK, J., 2006, The Architecture Analysis & Design Language (AADL): An Introduction,
Technical Note CMU/SEI-2006-TN-011,

 http://www.sei.cmu.edu/publications/documents/06.reports/06tn011.html (accessed June 2009)
GROSSKOPF, DECKER and WESKE. (Feb 28, 2009). The Process: Business Process Modeling using BPMN,

Meghan Kiffer Press.
HAREL, D., 1987, A Visual Formalism for Complex Systems. Science of Computer Programming 8(3), pp.231–274
HAREL, D., 1992, Biting the silver bullet: toward a brighter future for system development, IEEE Computer, Vol.

25(1), pp.8-20
HOARE, C. A. R., Communicating Sequential Processes. Prentice-Hall, 1985.
HOLZMANN, G., 2004, The SPIN Model Checker, Boston, Addison-Wesley 2004
ISO 2011, International Organization for Standardization, ISO Standard ISO/IEC 42010:2007, “Systems and

Software Engineering – Recommended Practice for Architectural Description of Software-Intensive Systems.”
JACKSON, D., 2006, Software Abstractions: Logic, Language, and Analysis, Cambridge, Massachusetts: The MIT

Press.
JUN SUN, YANG LIU, JIN SONG DONG and JUN PANG, PAT: Towards Flexible Verification under Fairness. The

21th International Conference on Computer Aided Verification (CAV 2009), pages 709-714, Grenoble, France,
June, 2009.

KICZALES, G., LAMPING, J., MEHDBEKAR, A., MAEDA, C., LOPES, C. V., LOINGTIER, J., IRWIN, J., 1997,
"Aspect-Oriented Programming", Proceedings of the European Conference on Object-Oriented Programming
(ECOOP), Springer-Verlag LNCS 1241. June 1997

KNUTH, D., 1984, Literate Programming, The Computer Journal, 27(2): 97-111, May 1984
KRUCHTEN, P., 1995, Architectural Blueprints - the 4+1 View Model of Software Architecture. IEEE Software. 12

(6), pp. 42-45
KRUCHTEN, P., 2001, “Common misconceptions about Software Architecture”, The Rational Edge 01/1998
LAMPORT, L., 1978, “Time, Clocks, and the Ordering of Events in a Distributed System", Communications of the

ACM, vol. 21, No. 7, July 1978, pp. 558-565.
LISKOV, B., ZILLES, S., 1974, Programming with abstract data types, ACM SIGPLAN Notices, Vol 9 Issue 4, pp. 50

– 59
LUCKHAM, D., AUGUSTIN, L., KENNEY, J., VERA, J., BRYAN, D., MANN, W. 1995, Specification and analysis of

system architecture using Rapide. IEEE Transactions on Software Engineering, Special Issue on Software
Architecture, 21(4):336–355, April 1995.

LUCKHAM, D., J., VERA, J., 1995, An Event-Based Architecture Definition Language, IEEE Transactions on
Software Engineering, 21(9): 717–734, September 1995.

MEDVIDOVIC, N., ROSENBLUM, D., REDMILES, D., 2002, Modeling Software Architectures in the Unified
Modeling Language, ACM Transactions on Software Engineering and Methodology, Vol.11, No. 1, January 2002,
pp.2-57.

MILNER, R., 1989, “Communication and Concurrency”, Prentice Hall
NASSI, I.; SHNEIDERMAN, B., 1973, Flowchart techniques for structured programming, ACM SIGPLAN Notices

XII, August 1973, pp.12 – 26
OMG, 2010, Concrete Syntax for UML Action Language (Action Language for Foundational UML), version Beta 1

(2010), www.omg.org/spec/ALF
OREIZY, P., ROSENBLUM, D., TAYLOR, R., 1998, On the Role of Connectors in Modeling and Implementing

Software Architectures, Department of Information and Computer Science, University of California, Irvine,
Technical Report UCI-ICS-98-04, Feb. 1998.

PAPADOPOLOUS, G.A., ARBAB, F.,1998, Coordination Models and Languages, Advances in Computers, 48
PELLICCIONE, P., INVERARDI, P., MUCCINI, H., 2009, CHARMY: A Framework for Designing and

Verifying Architectural Specifications, IEEE Transactions on Software Engineering, Vol. 35, No 3,
2009, pp.325-346

 26

PERRY, D., WOLF, A., 1992, Foundations for the Study of Software Architecture, ACM SIGSOFT Software
Engineering Notes, 17:4, pp. 40-52.

PNUELI, A., 1981, A temporal logic of programs, Theoretical Computer Science, 13: pp.45-60.
RIVERA, J., 2010, System Architecture Modeling Methodology for Naval Gunship Software, PhD dissertation, CS

Department, Naval Postgraduate School, Monterey, CA, USA, December 2010.
ROSCOE, B., 1997, The Theory and Practice of Concurrency, Prentice Hall International Series in Computer

Science (580pp), ISBN 0-13-674409-5
ROZANSKI, N., WOODS, E., 2012. Software Systems Architecture, 2nd Edition, Addison-Wesley.
SHAW, M., GARLAN, D. 1996. Software Architecture: Perspectives on an Emerging Discipline. Prentice-Hall,

Englewood Cliffs, New Jersey.
SONGZHEN SONG, JIEXIN ZHANG, YANG LIU, MIKHAIL AUGUSTON, JUN SUN, JIN SONG

DONG, TIEMING CHEN, Formalizing and verifying stochastic system architectures using Monterey Phoenix,
Software & Systems Modeling, Springer Berlin Heidelberg, April 2014, pp.1-19.

SPIVEY, J.M., The Z Notation: A reference manual, Prentice Hall International Series in Computer Science, 1989.
(2nd Ed., 1992)

TAYLOR, R., MEDVIDOVIC, N., DASHOFY, E., 2010, Software Architecture, Foundations, Theory, and Practice,
John Wiley & Sons, Inc.

WANG, J., PARNAS, D., 1994, Simulating the behavior of software modules by trace rewriting, IEEE Trans.
Software Eng. 20, 10 (Oct. 1994), pp. 750-759.

ZHANG JIEXIN, YANG LIU, AUGUSTON, M., JUN SUN, JIN SONG DONG, 2012, Using Monterey Phoenix to
Formalize and Verify System Architectures, 19th Asia-Pacific Software Engineering Conference APSEC 2012,
December 4 – 7, 2012, Hong Kong.

 27

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library

Naval Postgraduate School
Monterey, California

3. Research Sponsored Programs Office, Code 41

Naval Postgraduate School
Monterey, CA 93943

4. Consortium for Robotics and Unmanned Systems Education and Research, Naval
Postgraduate School (CRUSER; http://cruser.nps.edu)
Monterey, CA 93943

 28

	1. INTRODUCTION
	2. BRIef related work survey
	3. behavior models
	3.1 Event concept
	3.2 Event grammar
	car_race: {+ driving_a_car +};
	driving_a_car: go_straight (* (go_straight | turn_left | turn_right) *) stop;
	go_straight: (accelerate | decelerate | cruise);

	4. Behavior composition and architecture views
	SCHEMA simple_message_flow
	ROOT Task_A: (* send *);
	ROOT Task_B: (* receive *);
	COORDINATE $x: send FROM Task_A,
	$y: receive FROM Task_B
	DO
	ADD $x PRECEDES $y
	OD;
	COORDINATE <!> $x: E1 FROM A,
	$y: E2 FROM B
	DO ADD $x PRECEDES $y OD;
	ROOT PreAdvice: (* Prolog *);
	ROOT PostAdvice: (* Epilog *);
	COORDINATE $jp: (M1 | M2) FROM Main,
	$a1: Prolog FROM PreAdvice,
	$a2: Epilog FROM PostAdvice
	DO ADD $a1 PRECEDES $jp, $jp PRECEDES $a2 OD;
	4.1 Data items as behaviors
	SCHEMA Data_flow
	ROOT Process_1: (* work write *);
	ROOT Process_2: (* (read | work) *);
	ROOT File: (+ write +) (* read *);
	Process_1, File SHARE ALL write;
	Process_2, File SHARE ALL read;
	4.2 Behavior constraints
	SCHEMA Stack
	ROOT Stack_operation: (* (push | pop) *);
	ENSURE FOREACH $x: pop FROM Stack_operation
	(Number_of (pop) before ($x) < Number_of (push) before ($x));
	4.3 Components and connectors
	SCHEMA Buffered_transaction
	ROOT Task_A: (* Send *);
	ROOT Task_B: (* Receive *);
	ROOT Buffered_channel: {* (Send [Receive]) *} (Overflow | Normal);
	-- ordering between Send and possible Receive is specified here
	Task_A, Buffered_channel SHARE ALL Send;
	Task_B, Buffered_channel SHARE ALL Receive;
	ENSURE FOREACH $x: Receive FROM Buffered_channel
	(Number_of (Send) before ($x) - Number_of (Receive) before ($x)) <= max_buffer_size;
	ENSURE FOREACH $x: Overflow FROM Buffered_channel
	(Number_of (Send) before ($x) - Number_of (Receive) before ($x)) > max_buffer_size;
	ENSURE FOREACH $x: Normal FROM Buffered_channel
	(Number_of (Send) before ($x) - Number_of (Receive) before ($x)) <= max_buffer_size;

	5. Environment’s behavior
	SCHEMA ATM_withdrawal
	ROOT Customer: (* insert_card
	((identification_succeeds
	request_withdrawal
	(get_money | not_sufficient_funds)) |
	identification_fails) *);
	ROOT ATM_system: (* read_card validate_id
	(id_successful check_balance
	((sufficient_balance dispense_money) |
	unsufficient_balance) |
	id_failed) *);
	ROOT Data_Base: (* (validate_id | check_balance) *);
	Data_Base, ATM_system SHARE ALL validate_id, check_balance ;
	COORDINATE $x: insert_card FROM Customer,
	$y: read_card FROM ATM_system
	DO ADD $x PRECEDES $y OD;
	COORDINATE $x: request_withdrawal FROM Customer,
	$y: check_balance FROM ATM_system
	DO ADD $x PRECEDES $y OD;
	COORDINATE $x: identification_succeeds FROM Customer,
	$y: id_successful FROM ATM_system
	DO ADD $y PRECEDES $x OD;
	COORDINATE $x: get_money FROM Customer,
	$y: dispense_money FROM ATM_system
	DO ADD $y PRECEDES $x OD;
	COORDINATE $x: not_sufficient_funds FROM Customer,
	$y: unsufficient_balance FROM ATM_system
	DO ADD $y PRECEDES $x OD;
	COORDINATE $x: identification_fails FROM Customer,
	$y: id_failed FROM ATM_system
	DO ADD $y PRECEDES $x OD;

	If the view of the whole system’s behavior emphasizing the interaction between the parts (components) can be visualized as in Fig. 6, (b), then the view of the root’s standalone behavior can be rendered as a UML Activity Diagram. Since event aggregate...
	An event trace generated from the schema can be considered as a use case example. The event trace on Fig. 6, (a) can be viewed also as an analog of UML sequence diagram’s “swim lanes” for Customer and ATM_system interactions. MP models can be integrat...
	6. Multi-tier architecture modeling
	SCHEMA two-tier-architecture
	ROOT Top_layer: (* top_event anything_else *);
	ROOT Bottom_layer: (* bottom_event anything_else *);
	COORDINATE $x: top_event FROM Top_layer,
	$y: (+ bottom_event +) FROM Bottom_layer
	DO ADD $y IN $x OD;
	$y: (* <1..3> bottom_event *)

	7. Component reuse with the join operation
	7.1 Compiler front end in batch processing mode
	SCHEMA Lexer
	ROOT Text_Input: (* (String | Unget_char) *);
	String: (+ Get_char +);
	ROOT Token_processing: (* Token_recognition *);
	Token_recognition: {+ RegExpr_Match +}
	(+ Unget_char +) Fire_rule;
	RegExpr_Match: (+ Get_char +);
	Fire_rule: [Put_token];
	Text_Input, Token_processing SHARE ALL Unget_char;
	COORDINATE $t: Token_recognition FROM Token_processing,
	$s: String FROM Text_Input
	DO
	COORDINATE <!> $r: RegExpr_Match FROM $t
	DO $r, $s SHARE ALL Get_char OD
	OD;
	ENSURE FOREACH $t: Token_recognition FROM Token_processing
	(Number_of(Get_char) in ($t) > Number_of(Unget_char) in ($t));
	SCHEMA A
	INCLUDE B;
	NEW B;
	Roots for A
	Additional constraints and composition operations involving roots from both A and B
	SCHEMA Parser
	INCLUDE Stack;
	NEW Stack;
	ROOT Parsing: push -- push the start symbol on the stack
	(* Get_token (* Reduce *) Shift *) [Syntax_error];
	Shift: push ;
	Reduce: (+ pop +) push Put_node;
	ROOT Parse_Tree: (* Put_node *);
	--Put_node event represents the construction of a parse tree.
	Parsing, Stack SHARE ALL pop, push;
	Parsing, Parse_Tree SHARE ALL Put_node;
	Example 9.
	SCHEMA Batch_processing
	INCLUDE Lexer, Parser;
	NEW Lexer;
	NEW Parser;
	ROOT Batch: Produce_tokens Consume_tokens;
	Produce_tokens: (* Put_token *);
	Consume_tokens: (* Get_token *);
	Batch, Lexer SHARE ALL Put_token;
	Batch, Parser SHARE ALL Get_token;
	ENSURE Number_of(Put_token) in (Batch) >= Number_of(Get_token) in (Batch);
	7.2 Compiler’s front end in incremental mode
	Example 10.
	SCHEMA Incremental_processing
	INCLUDE Lexer, Parser;
	NEW Lexer;
	NEW Parser;
	COORDINATE $x: Token_recognition FROM Token_processing,
	$y: Get_token FROM Parsing
	DO ADD $x IN $y OD;

	8. Schema reuse with the Map composition operation
	Example 11
	The User requests access to a System’s services by providing his general Id. The System requests that specific credentials be provided. If the supplied credentials are valid, the System authorizes the User to access the services, otherwise the System ...
	SCHEMA Authentication_Scenario
	ROOT User: request_access
	(* creds_invalid request_access *)
	(creds_valid (run_services | abandon_access_request) |
	creds_invalid (attempt_exhausted| abandon_access_request));
	request_access: provide_general_ID provide_unique_ID;
	The alternative for abandon_access_request always includes an interaction with the System. Absence of the interaction triggers long_wait_for_User in the System.
	ROOT System: request_unique_ID
	[creds_invalid request_unique_ID
	[creds_invalid request_unique_ID
	[creds_invalid attempt_exhausted
	invalid_creds_notice cancel_access_request]]]
	[(creds_valid (authorize_access run_services |
	long_wait_for_User cancel_access_request) |
	creds_invalid long_wait_for_User cancel_access_request)
] ;
	User, System SHARE ALL creds_valid, creds_invalid,
	attempt_exhausted, run_services;
	COORDINATE $x: provide_general_ID FROM User,
	$y: request_unique_ID FROM System
	DO ADD $x PRECEDES $y OD;
	COORDINATE $x: request_unique_ID FROM System,
	$y: provide_unique_ID FROM User
	DO ADD $x PRECEDES $y OD;
	Example 12
	SCHEMA Processing
	INCLUDE Authentication_Scenario;
	ROOT Customer: (* work_session *);
	work_session: (+ log_in +) (login_succeeds work | login_fails);
	work: (* (read | write) *);
	ROOT Login_service: (* credentials_check *);
	credentials_check: (authorize_access | refuse_access);
	ROOT DataBase: (* (read | write) *);
	Customer, DataBase SHARE ALL read, write;
	COORDINATE $a: authorize_access FROM Login_service,
	$b: login_succeeds FROM Customer
	DO ADD $a PRECEDES $b OD;
	COORDINATE $a: refuse_access FROM Login_service,
	$b: login_fails FROM Customer
	DO ADD $a PRECEDES $b OD;
	COORDINATE $w: work_session FROM Customer,
	$ch: credentials_check FROM Login_service,
	DO
	$a: NEW Authentication_Scenario;
	MAP $w AS User FROM $a,
	$ch AS System FROM $a,
	work FROM $w AS run_services FROM $a,
	authorize_access FROM Login_service
	AS authorize_access FROM $a,
	refuse_access FROM Login_service
	AS cancel_access_request FROM $a;
	COORDINATE $log: log_in FROM $w,
	$req: request_access FROM (User FROM $a)
	DO
	MAP $log AS $req
	OD
	OD;

	9. Event partitioning and coordination
	Example 13. Communicating via unreliable channel.
	SCHEMA AtoB
	ROOT TaskA: (* A_sends_request_to_B
	(A_receives_data_from_B | A_timeout_waiting_from_B) *);
	-- it is assumed that A is the leading actor
	ROOT TaskB: (* (B_working | request_bounces_back) *);
	B_working: B_receives_request_from_A B_sends_data_to_A;
	-- request_bounces_back event simulates the connector's unsuccessful attempt to connect to B.
	ROOT Connector_A_to_B: (* A_sends_request_to_B
	(B_receives_request_from_A |
	[request_bounces_back] A_timeout_waiting_from_B)
	*);
	-- A_timeout_waiting_from_B may happen either because Connector_A_to_B just fails or because TaskB is not working.
	ROOT Connector_B_to_A: (* B_sends_data_to_A
	(A_receives_data_from_B | A_timeout_waiting_from_B) *);
	TaskA, Connector_A_to_B SHARE ALL A_sends_request_to_B;
	TaskB, Connector_A_to_B SHARE ALL B_receives_request_from_A, request_bounces_back;
	TaskB, Connector_B_to_A SHARE ALL B_sends_data_to_A;
	TaskA, Connector_B_to_A SHARE ALL A_receives_data_from_B;
	TaskA, Connector_A_to_B |+| Connector_B_to_A SHARE ALL A_timeout_waiting_from_B;
	Operator |+| is used in the context of SHARE ALL as an exclusive union (a partitioning of events, XOR-like operation) with respect to the sharing of a specific event. The event A_timeout_waiting_from_B cannot belong to both Connector_A_to_B and Connec...

	10. reactive event integration
	<| event_pattern 'WHEN' when_unit , when_unit , … |>
	The CUT() is an abbreviation for an otherwise cumbersome composition of alternative event patterns inserting the triggering event in all possible positions. The WHEN clause event pattern can be defined as:
	Example 14. A process that launches and terminates another process.
	SCHEMA Invoke_and_terminate
	ROOT Process_A: (* Launch_B do_something [Abort_B] *);
	ROOT Process_B: (* (<| Idle WHEN Abort_B ==> |> |
	Launch_B <| (* b1 b2 b3 *) WHEN Abort_B ==> wrap_up |>)
	*);
	Process_A, Process_B SHARE ALL Launch_B, Abort_B ;
	When Process_B is Idle, there is no response to Abort_B. The whole WHEN clause around Idle can be omitted, since MP model defines only acceptable event traces.

	11. event attributes
	Some Alloy-specific syntax:
	 the disj keyword implies that the attribute values (events in this example) are disjoint;
	 ~r is a transposition of binary relation r;
	 ^r stands for the transitive closure of binary relation r;
	 the dot, like in left_user.right stands for the left-associative join operator in Alloy;
	 && denotes the set intersection operation in Alloy.
	SCHEMA Dining_Philosophers
	ROOT Philosophers: {* <5> Philosopher *};
	Philosopher: (* think eat *)
	ATTRIBUTES { -- attributes of the Philosopher event
	disj left, right: Philosopher;
	disj left_fork, right_fork: Fork; };
	Using events as attributes of other events extends the standard relations PRECEDES and IN, for instance, to model interacting components’ topology and other dependencies between events.
	Event grammar rules appear to be yet another event attribute with a specific syntax and without attribute name. By assigning attribute names to the behavior rules, it may be possible to define several different behaviors as attributes and to make the ...
	eat: { use_left_fork, use_right_fork };
	use_left_fork: use_fork;
	use_right_fork: use_fork;
	No ordering is required for use_left_fork, use_right_fork activities.
	ROOT Forks: {* <5> Fork *};
	Fork: (* (idle | use_fork) *)
	ATTRIBUTES {
	disj left_user, right_user: Philosopher; };
	The following constraints provide topology specification as filters for trace generation.
	Several attributes are mutually symmetric relations.
	ENSURE (left = ~right and left_fork = ~right_user and right_fork = ~left_user);
	Philosophers form a cycle. Standalone Philosopher event name stands here for the set of all events of this type in the event trace (following Alloy conventions).
	ENSURE FOREACH $p: Philosopher FROM Philosophers ($p.^left = Philosopher);
	Neighbors share the same Fork.
	ENSURE FOREACH $f: Fork FROM Forks ($f.left_user.right.left_fork = $f);
	Philosophers behavior is synchronized via event sharing. A |+| B is an exclusive union of events w.r.t. SHARE ALL, which prevents A and B from sharing the same instance of the event E (partition for sharing) in (A |+| B), C SHARE ALL E.
	COORDINATE <!> $p: Philosopher FROM Philosophers
	DO
	(use_left_fork && ^IN.$p) |+| (use_right_fork && ^IN.($p.left)),
	$p.left_fork SHARE ALL use_fork
	OD;

	12. A few words on Assertions and queries
	13. implementation
	14. conclusions
	14.1 What is next?
	SCHEMA Base
	There are no root events, this schema is used only to bring the following filter into derived schema.
	ENSURE FOREACH $a, $b, $c: Event FROM $Trace
	($a PRECEDES* $b ((($a IN* $b)) (--Axiom 1)
	($a PRECEDES* $b ((($b IN* $a)) (--Axiom 2)
	($a IN* $b ((($a PRECEDES* $b)) (--Axiom 3)
	($a IN* $b ((($b PRECEDES* $a)) (--Axiom 4)
	($a PRECEDES* $b ((($b PRECEDES* $a)) (-- Axiom 5)
	($a IN* $b ((($b IN* $a)) (-- Axiom 6)
	-- Transitivity
	(($a PRECEDES* $b) (($b PRECEDES* $c) (($a PRECEDES* $c)) (-- Axiom 7)
	(($a IN* $b) (($b IN* $c) (($a IN* $c)) (-- Axiom 8)
	-- Distributivity
	(($a IN* $b) (($b PRECEDES* $c) (($a PRECEDES* $c)) (-- Axiom 9)
	(($a PRECEDES* $b) (($c IN* $b) (($a PRECEDES* $c)); -- Axiom 10)
	SCHEMA Wrong
	INCLUDE Base;
	NEW Base;
	ROOT A: a b;
	ROOT B: b a;
	A, B SHARE ALL a, b;

	INITIAL DISTRIBUTION LIST

